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ABSTRACT

The need for automated grading tools for essay writing and
open-ended assignments has received increasing attention
due to the unprecedented scale of Massive Online Courses
(MOOC:s) and the fact that more and more students are relying
on computers to complete and submit their school work. In
this paper, we propose an efficient memory networks-powered
automated grading model . The idea of our model stems from
the philosophy that with enough graded samples for each score
in the rubric, such samples can be used to grade future work
that is found to be similar. For each possible score in the rubric,
a student response graded with the same score is collected.
These selected responses represent the grading criteria spec-
ified in the rubric and are stored in the memory component.
Our model learns to predict a score for an ungraded response
by computing the relevance between the ungraded response
and each selected response in memory. The evaluation was
conducted on the Kaggle Automated Student Assessment Prize
(ASAP) dataset. The results show that our model achieves
state-of-the-art performance in 7 out of 8 essay sets and can
be trained efficiently due to the simplicity of model structure.

ACM Classification Keywords
1.2.7. ARTIFICIAL INTELLIGENCE: Natural Language Pro-
cessing

Author Keywords
Automated grading; neural networks; memory networks;
word embeddings; natural language processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

L@S’17, April 20-21, 2017, Boston, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 123-4567-24-567/08/06. .. $15.00

DOI: http://dx.doi.org/10.475/123_4

Yaqiong Zhang
Worcester Polytechnic
Institute
Worcester, MA 01609, USA
yzhang19@wpi.edu

Xiaolu Xiong
Worcester Polytechnic
Institute
Worcester, MA 01609, USA
xxiong @wpi.edu

Neil Heffernan
Worcester Polytechnic
Institute
Worcester, MA 01609, USA
nth@wpi.edu

INTRODUCTION

Automated grading is a critical part of Massive Open Online
Courses (MOOCs) system and any intelligent tutoring systems
(ITS) at scale. Many studies have been conducted to improve
automated grading for assignments with simple fixed-form an-
swers, short-answers [3, 15, 19, 26, 21], or long-form answers
[26, 2,7, 14]. Some standard tests, such as Test of English as
a Foreign Language (TOEFL) and Graduate Record Examina-
tion (GRE), assess student writing skills. Manually grading
these essay will be time-consuming. Thus automated essay
scoring (AES) systems has been used in these tests to reduce
the time and cost of grading essays. Moreover, as massive
open online courses (MOOCSs) become widespread and the
number of students enrolled in one course increases, the need
for grading and providing feedback on written assignments
are ever critical.

As part of the automated grading system, AES has employed
numerous efforts to improving its performance. AES uses
statistical and Natural Language Processing (NLP) techniques
to automatically predict a score for an essay based on the essay
prompt and rubric. Essay writing is usually a common student
assessment process in schools and universities. In this task,
students are required to write essays of various length, given a
prompt or essay topic.

Most existing AES systems are built on the basis of predefined
features, e.g. number of words, average word length, and
number of spelling errors, and a machine learning algorithm
[4]. It is normally a heavy burden to find out effective features
for AES. Moreover, the performance of the AES systems is
constrained by the effectiveness of the predefined features.
Recently another kind of approach has emerged, employing
neural network models to learn the features automatically in
an end-to-end manner [29]. By this means, a direct predic-
tion of essay scores can be achieved without performing any
feature extraction. The model based on long short-term mem-
ory (LSTM) networks in [29] has demonstrated promise in
accomplishing multiple types of automated grading tasks.
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Neural Networks have achieved promising results on various
NLP tasks, including machine translation [1, 5], sentiment
analysis [6], and question answering [13, 31, 18, 28]. Neural
Network models, in terms of NLP tasks, use word vectors to
learn distributed representations from text. The advantages are
that these models do not require hand-engineered features and
can be trained to solve tasks in an end-to-end fashion.

Recent work [29] has exploited several Recurrent Neural Net-
work (RNN) models to solve AES tasks. The results show that
neural-based models outperform even strong baselines. Mem-
ory Networks (MN) [31, 18, 28] have been recently introduced
to deal with complex reasoning and inferencing NLP tasks
and have been shown to outperform RNNs on some complex
reasoning tasks [28]. MN is a class of models which contains
an external scalable memory and a controller to read from
and write to that memory. The notion of neural networks with
memory was introduced to solve complex reasoning and in-
ferring Al-tasks which require remembering external contexts.
Some work [18, 28] has shown the success of MN on different
kinds of tasks, e.g. bADI tasks [30], MovieQA, and WikiQA
[18].

To our knowledge, no study has been conducted to investigate
the feasibility and effectiveness of MN applied in automated
grading tasks. In this study, we develop a generic model for
such tasks using Memory Networks inspired by their capabil-
ity to store rich representations of data and reason over that
data in memory. For each essay score, we select one essay
exhibiting the same score from student responses as a sample
for that grade. All collected sample responses are loaded into
the memory of the model. The model is trained with the rest
of student responses in a supervised learning manner on these
data to compute the relevance between the representation of
an ungraded response and that of each sample. The intuition
is that as a part of a scoring rubric, a number of sample re-
sponses of variable quality are usually provided to students
and graders to help them better understand the rubric. These
collected responses are characterized with expectations of
quality described in the rubric. The model is expected to learn
the grading criteria from these responses. We evaluate our
model on a publicly available essay grading data set from the
Kaggle Automated Student Assessment Prize (ASAP) compe-
tition (https://www.kaggle.com/c/asap-aes). Our experiments
show that our model achieves state-of-the-art results on this
dataset and training of the model is found to be efficient and
cost-effective.

The rest of the paper is organized as follows. Section 2 gives
an overview of related work in this research area. Section
3 provides detailed information of our model. Section 4 de-
scribes the ASAP dataset and evaluation metrics used to test
our framework. Furthermore, it contains the details of our im-
plementation and experimental setup to help other researchers
replicate our work. In section 5, we present the results of our
framework and compare them with other models. Finally, we
discuss the results and conclude the paper.

RELATED WORK

Automated Grading

MOOCs were introduced in 2008 and become more popular
recently. Most MOOCs systems provide automated grading
as their important features to prove the efficiency of their in-
teraction with massive number of online users. Some specific
assignment types have been adopted for automated grading
since the correct answers of these kinds of assignments have
some simple fixed-forms, such as multi-choice questions. Pro-
gramming assignments are the represents of these kinds of
assignments with simple form answer such as "yes" or "no"
[8, 11]. Not satisfied with providing answers for one specific
assignment, more efforts have been devoted to providing feed-
back on many different assignments according to the shared
features of the programming codes [22, 25].

However, many assignment types cannot be responded well
only with simple feedback. Some studies have been con-
ducted with the attempt to fixing this problem by using semi-
automatic grading approach. This kind of approach aims to
optimize the collaboration between humans and machines and
provide short-answers [20, 3]. Another approach is to provide
prediction directly. One research direction of this approach
is to apply information extraction techniques to constructing
specific answer patterns manually or to training from large
training dataset with strong supervision support [2,3,24]. An-
other direction is to compare the students’ answers with a es-
tablished standard answer with an unsupervised text-similarity
approach [21].

Most studies mentioned above are dealing with simple fixed-
form answers or short-answers assignments. Some complex
assignments have long form answer instead of short, simple
one. Essay writing with a given topic is a typical assignment
with long form answers and AES has become one important
research branch of automated grading system.

AES is generally treated as a machine learning problem. We
can group the existing AES solutions from different points
of view. Most developed AES system is based on a number
of predefined features. These features include essay length,
number of words, lexicon and grammar, syntactic features,
readability, text coherence, essay organization, and so on [4].
Recently, there emerges another trial to treat the whole essays
as inputs and learn the features automatically in an end-to-end
manner [29]. Without pres-working on features extraction,
work burden was lightened. Moreover, the predicting accurate
is improved by removing the dependency of effectiveness of
predefined features.

Based on learning techniques utilized in existing solutions, we
divide them into three categories: regression based approach,
classification based approach and preference ranking based ap-
proach. PEG-system and E-rater are two examples that belong
to regression based approach. Specifically, when the scores
range of the essays is wide, the regression based approach is
normally adopted since it treats the essay score as a continuous
value.

Besides essay writing, some complex assignments such as
medicinal assignments utilized regression model as well [9].
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Some work such as [27, 14] treated the AES task as a classifi-
cation problem. Each possible score is converted into a class
label. By using classic classification algorithms, AES system
predicts which class an essay should belongs to. Since it treats
each score as a class label, this kind of approach is not suitable
for a very large range of scores. Recently preference ranking
based approach was also proposed by [33].

According to the prompts or essay topics the AES system deals
with, the existing solutions can be divided into two groups:
prompt-specific and generic. The prompt-specific approach
train the AES system with essays from one specific topic.
This kind of AES system normally has excellent performance
on the specific topic it was trained. Most of existing works
belongs to this prompt-specific approach. Generic approach
train the AES system with essays from different prompts. As
an example, the work of [4] proposed a domain adaptation
technique which is based on Bayesian linear ridge regression,
to achieve a generic prompt adaption AES system. This kind
of approach normally neglects the prompt related features but
focus on writing quality.

Memory Networks

Memory Networks (MN) [31] and Neural Turing Machines
(NTM) [10] are two classes of neural networks models with
external memory. MN store all information (e.g. knowledge
base, background context) into external memory, assign a rel-
evance probability to each memory slot using content-based
addressing schemes, and read contents from each memory slot
by taking the their weighted sum with relevance probabili-
ties. End-to-End Memory Networks (MemN2N) [28] can be
trained end-to-end compared to MN, and hence require less su-
pervision. Key-value Memory Networks [18] have a key-value
paired memory and is built upon MemN2N. Key-value paired
structure in memory is a generalized way of storing content
in memory. The contents in key memory are used to calculate
the relevance probabilities. The contents in value memory are
read into the model to help make the final prediction.

NTM form another family of neural networks models with
external memory. The NTM controller uses both content and
location-based mechanism to access the memory. On the
other hand, MN only uses content-based mechanism. The
fundamental difference between these two models is the MN
do not have a mechanism to change the content in memory,
while the NTM can modify the content of the memory in each
episode. This leads to the fact that MN is easier to be trained
in practice.

MODEL

An illustration of our model is given in Figure 1, which is
inspired by the work of memory networks applied in question
answering [18, 28]. Our model is comprised of four layers:
input representation layer, memory addressing layer, memory
reading layer, and output layer. Input representation layer is
responsible for generating a vector representation for a student
response. Memory addressing layer loads selected samples
of student responses to memory, and assigns a weight to each
memory piece. Afterward memory reading layer gathers the
content from memory by taking weighted sum of each memory

piece based on the weights calculated from previous layer, and
produces a resulting state. Finally the output layer makes the
prediction on the basis of the resulting state. Neural networks
models are usually featured with multiple computational layers
to learn a more abstract representation of the input. Our model
is extended to have the structure of multiple layers (hops) by
stacking memory addressing layer and memory reading layer
repeatedly.

Input Representation

Each student response is represented as a vector in our model.
Given a student response x = {x,X3,x3, ..., X, }, Where n is
the length of the response, we map each word into a word
vector w; = Wx;. All word vectors come from a word em-
bedding matrix W € R¥*", where d is the dimension of word
vector and V is the vocabulary size. To represent an essay
in a vector, we selected position encoding (PE) described in
[28]. By the scheme of PE, the vector representation of a re-
sponse is calculated by m =Y, j l;-Wx;;, where - is an element-
wise multiplication. /; is a column vector with the structure
Ikj=1—j/J)—(k/d)(1—2j/J) (assuming 1-based index-
ing), where J is the total number of words in the response, d
is the dimension of word vector. PE is a simple and efficient
way to represent a response, and does not need to learn extra
parameters. It has been used in other tasks [32].

Alternative way to represent a response is to feed each word
vector from a response into Recurrent Neural Networks (RNN)
[29]. Compared to traditional forward neural networks, hidden
states of RNN are able to retain the sequential information. By
feeding a response into RNN, all the information which are
useful for the grading ideally should be stored in the hidden
states. Instead of taking the last hidden state as the essay
representation, it is recommended to calculate the mean of all
hidden states to retrieve the representation for a long response.

Memory Addressing

After generating the representation of the responses, we select
a sample from student response for every possible score, which
is graded with the same score. The selected samples work as
a representation of the criteria in the rubric for all possible
scores. Expert knowledge can be used here to choose most
representative sample for each score or even generate a number
of ideal samples. The motivation is that the model is highly
likely to distinguish the difference within the criteria for each
score with these representative samples. For our experiment,
we randomly pick a sample from student responses for each
score, which is graded with that score.

All sampled responses are loaded into the memory as an array
of vectors my,my,,my,, where h is the total number of sampled
essays. An ungraded response is denoted as x. The basic idea
of memory addressing is that it assigns a weight/importance
to each sampled response m; by calculating a dot product
between x and m; followed by a softmax.

pi = Softmax(xAT - m;BT) ()

where So ftmax(y;) =/}, ;€"/, A is a k x d matrix and so is
B. Defined in this way p is a weight vector over all sampled
responses. A and B are learned matrices used to transfer the
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Figure 1. An illustration of memory networks for AES. The score range is 0 - 3. For each score, only one sample with the same score is selected from
student responses. There are 4 samples in total in memory. Input representation layer is not included.

response representation to a d-dimensional features space. The
intuition is that the responses with the same grade are highly
likely to have the similar representation in the feature space.

Memory Reading
After weight vector p is calculated, the output of the memory
is computed as a weighted sum of each piece of memory in m:

0= Z pimiCT 2
7

where C is a k X d matrix used to transfer the response rep-
resentation to the feature space. The k X d matrix C may be
identical to A, but from our experiment, we found that training
a separate C leads to a better performance. From the equation,
we can see that weight vector p controls the amount of content
that is read from each memory piece.

Multiple Hops

The success of neural networks is due to its ability of learn-
ing multiple layers of neurons and each layer can transform
the representation at previous level into a higher level of ab-
stract representation. Inspired by this idea, we stack multiple
memory addressing step and memory reading step together to
handle multiple hops operations.

After receiving the output o from equation 2, the ungraded
response u is updated with:

up = Relu(Ry(u+o0)) 3)

where R; is a k x k matrix, u = xA” and Relu(y) = max(0,y).
Then memory addressing step and reading memory step are
repeated, using a different matrix R; on each hop j. The
memory addressing step is modified accordingly to use the
updated representation of the ungraded response.

pi = Softmax(u;-m;B) 4)

Output Layer
After a fixed number H hops, the resulting state uy is used to
predict a final score over the possible scores:

§ = Softmax(ugW + b) )

where W is k x r matrix, r is the number of possible scores
and b is the bias value. Note that the number of output nodes
equals to the length of score range. We calculate a distribution
over all possible scores and select most probable score as the
prediction.

The whole network is trained in end-to-end fashion without
any hand-engineered features, and the matrices A, B,C,W and
R1,...,Ry are learned through backpropagation and stochastic
gradient descent by minimizing a standard cross entropy loss
between the predicted score § and the actual score s.

EXPERIMENTAL SETUP

Dataset
Dataset used in this study comes from Kaggle Automated
Student Assessment Prize (ASAP) competition sponsored by



William and Flora Hewlett Foundation (Hewlett). There are 8
sets of essays and each set is generated from a single prompt.
All responses collected in the dataset were written by students
ranging from grade 7 to grade 10. Score range varies on essay
sets. All essays were graded by at least 2 human graders. The
average length of the essays differs for each essay set, ranging
from 150 words to 650 words. Selected details for each essay
set is shown in Table 1.

Evaluation Metric

Quadratic weighted Kappa (QWK) is used to measure the
agreement between the human grader and the model. We
choose to use this metric because it is the official evaluation
metric of the ASAP competition. Other work such as [4, 29,
24] that uses the ASAP dataset also uses this evaluation metric.
QWK is calculated using

Y jwijOi;
YiiwijEij

where matrices O, w and E are the matrices of observed
scores, weights, and expected scores respectively. Matrix
O;,j corresponds to the number of student responses that re-
ceive a score i by the first grader and a score j by the second
grader (the model in our experiment). The weight matrix are
wij = (i—j)*/(N—1)2, where N is the number of possible
scores. Matrix E is calculated by taking the outer product
between the score vectors of the two graders, which are then
normalized to have the same sum as O.

k=1- )

Implementation Details

The model was implemented using Tensorflow framework [16].
We used Adam stochastic gradient descent [12] for optimizing
the learned parameters. The learning rate was set to 0.002
and batch size for each iteration to 32 for all models. As final
prediction layer, we used a fully connected layer on top of
output from memory reading layer with a softmax activation
function. The model learned the parameters by minimizing a
standard cross-entropy loss between predicted score and the
correct score.

For regularization we used L2 loss on all learned parameters
with lambda set to 0.3 and limited the norm of the gradients
to be below 10. Moreover, we added gradient noise sampled
from a Gaussian distribution with mean 0 and variance 0.001
when training the memory networks.

We used the publicly available pre-trained Glove word embed-
dings [23], which was trained on 42 billion tokens of web data,
from Common Crawl (http://commoncrawl.org/). The dimen-
sion of each word vector is 300. Word2vec [17] is another
popular word embedding algorithm and pre-trained word em-
beddings are also publicly available from this algorithm. As
results shown in [23], Glove outperforms word2vec on word
analogy, word similarity, and named entity recognition tasks.

5-fold cross validation was used to evaluate our model. For
each fold, the data was split into two parts: 80% of the data
as the training data and 20% as the testing data. The sampled
response for each score is selected from the training data. A
model was trained on each essay set due to the fact that score

Score
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| LSTM |_>| LSTM |_.| LSTM | ...... | LSTM |
| GloVe | [ Glove | | GloVe |
i i f
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Figure 2. An illustration of baseline LSTM model for AES

range varies among 8 essay sets. We trained each model for
200 epochs using batch gradient descent.

Baselines

In [29], their system are compared with Enhanced AI Scoring
Engine (EASE), an open-source AES system, to demonstrate
the improvements on performance. EASE, like traditional
NLP techniques, requires fine-grained hand-engineered fea-
tures and builds a regression model on top of these features.
The reason we use this system as baseline is that it achieved
best QWK scores among all open-source systems participated
in ASAP competition. [31] described a set of reliable features
and reported the results of two models using these features:
support vector regression (SVR) and Bayesian linear ridge
regression (BLRR).

[29] examined several neural networks models, e.g. RNN
and Convolutional Neural Networks (CNN), on ASAP dataset.
In their experiments, Long Short Term Memory networks
(LSTM) [36], a variant of RNN, achieved the best performance.
LSTM is designed to have three gates in each hidden node:
input gate, forget gate, and output gate. By controlling these
three gates, LSMT has the capability of attaining long-term
dependencies. The structure of the LSTM model described in
[10] is presented in Figure 2.

To verify the efficacy of GloVe word embeddings and external
memory, we developed a simple multi-layer forward neural
networks (FNN) model, which is similar to our model with
respect to the model structure, but without an external mem-
ory. We refer this baseline model as FNN for the rest of paper
for convenience. As shown in Figure 3, each word of a stu-
dent response is first converted to a continuous vector using
GloVe word embeddings. The vector representation for the
response is obtained by applying PE on all word vectors from
the response. Afterward the representation is fed into 4 hidden
layers, each of which has 100 hidden nodes. Apply a softmax
operation on the resulting states of last hidden layer at output
layer to predict the final score. The model is also trained using
Adam Optimizer by minimising the standard cross entropy
between § and truth score s. FNN is properly defined by the
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Set Gradelevel #Essays Avglen

Max len Minscore Maxscore Mean score

8 1,783 350
10 1,800 350
10 1,726 150
10 1,772 150

8 1,805 150
10 1,800 150

7 1,569 250
10 723 650

OO N AW~

911
118
395
383
452
489
659
983

2 12 8
1 6 3
0 3 1
0 3 1
0 4 2
0 4 2
0 30 16
0 60 36

Table 1. Selected Details of ASAP dataset

Score

Student GloVe +
Response PE

~

Hidden layers

Figure 3. An illustration of baseline FNN. Use GloVe with PE to repre-
sent a student response. The representation is fed into 4-layer networks
and each layer has 100 hidden nodes.

equations below:

ho = Relu(AT x) (7
h; = Relu(Rihi—y), fori>1 8
§=Softmax(hyW) )

where x is the representation generated by GloVe with PE for
a student response. #; is the output of hidden layer i. H is
the total number of hidden layers. A, R; ,and W are weight
matrices. The bias vectors are omitted in the equations.

RESULTS

In this section, we describe the results of our experiments on
ASAP dataset and compare these results with baselines men-
tioned above. Column MN of Table 2 presents the QWK
scores of our model. Column EASE (SVR) and column
EASE(BLRR) contain the results from EASE with two differ-
ent regression methods. We also compare our model to other
neural models in [29] and the best results from [29] is listed in
column LSTM+CNN of Table 2. Note that their best results
reported in the paper are obtained by ensembling results from
10 runs of LSTM and 10 runs of CNN. However, in our exper-
iment, the results are recorded from a single run of a single
model after optimizing the hyperparameters. This is not fair
to compare their best results with ours directly. Therefore we
also pick the best performance achieved by a single model
from their paper and list in Column LSTM of Table 2. In
their setup, the number of hidden nodes in LSTM is 300 and
pre-trained word embeddings released by [34] is used.

As indicated in Table 2, our model outperforms in 7 out of 8
sets (except for set 7) and improves the average QWK score
by 4.0% compared to the baseline LSTM. Even compared to

their best ensembled model (LSTM+CNN), our model still
achieved better performance in 7 essay sets (except for essay
7). As expected, our model surpasses EASE in all 8 sets and
improves average QWK score by 10%.

The results from the FNN model mentioned above is presented
in column FNN of Table 2. In our experiments, FNN has 4
hidden layers and each layer has 100 hidden nodes, whose
structure is similar to that of our model except that the external
memory is removed. When comparing these results to the best
results from EASE, we find that this basic model outperforms
EASE in 7 out of 8 sets of essays (except for essay set 1) and
is even comparable with the complex model (LSTM). This
proves that using Glove word embeddings with PE to represent
a student response is able to capture important features useful
for grading the response. The effectiveness of the external
memory is proved by the fact that MN accomplishes better
performance on 7 sets (set 4 is equal) than FNN does. The
comparison between FNN and other models indicates that
representing a student response using GloVe with PE and
adding external memory are two key factors which may lead
to the good performance on ASAP dataset.

In ASAP dataset, two human graders are assigned to each
student response and each grader gives a score separately.
The final gold-standard score for each response is calculated
based on these two scores. In Column Human of Table 2,
we calculated the QWK scores between these two graders to
measure the agreement between two graders.

Time Cost

To study the time efficiency of our model, we recorded the
average training time for each epoch on three models: FNN,
MN, and LSTM. The number of hidden nodes in LSTM is 100,
which is the the same number of hidden nodes in FNN and
MN. However, in practice the number is usually set to a larger
number, e.g. 300 or 500. All these models are implemented
in Tensorflow, trained with same hyperparameters and run
on the same GPU (GTX 1080) server. When calculating the
average time cost, we do not include the time for loading
GloVe word embeddings and ASAP dataset, and the time for
building model before the data is fed into it.

Table 3 presents the average training time of each epoch on 8§
essay sets. It is clear that the LSTM model is computationally
expensive and requires more computational resource. The
complex calculation in each hidden node and long sequence
of the input slows down the training process. On the other



Set MN FNN EASE(SVR) EASEBLRR) LSTM LSTM+CNN Human
1 0.83 0.75 0.78 0.76  0.78 0.82 0.72
2 072 0.7 0.62 0.61 0.69 0.69 0.81
3 072 0.7 0.63 0.62 0.68 0.69 0.77
4 082 038 0.75 0.74 0.8 0.81 0.85
5 0.83 038 0.78 0.78  0.82 0.81 0.75
6 0.83 0.79 0.77 0.78  0.81 0.82 0.78
7 0.79 0.73 0.73 0.73  0.81 0.81 0.72
8 0.68 0.63 0.53 0.62 0.59 0.64 0.63
Avg 0.78 0.74 0.7 0.71  0.75 0.76 0.75

Table 2. QWK scores on ASAP dataset.

Set FNN MN LSTM
1 02 1.1 155
2 0.2 1 195
3 0.2 1 7
4 0.1 1 7
5 0.2 1 8
6 0.2 1 8.1
7 02 15 10
8 0.1 14 6.5
Avg 02 1.1 10.2

Table 3. Average runtime (seconds) of each training epoch

hand, MN is 9 times faster than LSTM since the computation
of GloVe with PE is a simple element-wise sum and MN is
insensitive to the length of a response. FNN is the fastest since
the structure of FNN is the simplest. Unlike MN, FNN does
not need to loop through each memory piece to measure the
relevance of two student responses at training time.

DISCUSSION AND CONCLUSION

In this study, we develop a generic model for automated grad-
ing tasks using memory networks and word embeddings. To
our best knowledge this is the first study that memory networks
are applied for this kind of task. Our model is tested on ASAP
dataset and achieves state-of-the-art performance in 7 out of §
essay sets. Similar to other neural networks models for AES,
our model can be trained in an end-to-end fashion and does
not require any hand-engineered features. Compared to RNN,
CNN, using GloVe word embeddings with PE to represent a
student response makes our model simple and cost-effective.
Adding external memory improves the performance over FNN
model, which means our model is able to take advantage of
sampled responses stored in the external memory.

Our model can be generalized to automatically grade assign-
ments from other subjects. As shown above, there are two
key factors to the performance: reliable representation and
memory component. In order to apply our model to other
kinds of assignment, learning a good vector representation for
the assignment is the first step. It is analogous to how the re-
gression model is built for supervised NLP tasks: first extract
numerical hand-engineered features from text and then apply
a regression model on these generated features to predict true
labels. In the context of neural networks, a vector is required

to represent the student response. Learning the vector can be
a part of the predictive model. For example, the word embed-
dings in [10] are learned from their predictive model. These
vectors can also come from pre-trained models, like GloVe
and word2vec. The next step is to select characterized samples
and store these samples to memory. The purpose of this step
is to teach the model to understand the grading strategy and
eventually associate a vector representation to a score.

However, we only test our model on one dataset. There is a
need to explore our model with more datasets that contain var-
ious formats of assignments to verify our model. Furthermore,
the representation of the assignment and the mechanism for
measuring relevance among assignments is still elementary.
Future work should therefore focus on these two areas to im-
prove the generalizability of the model. A lot of effort is still
needed to better interpret memory networks and explain the
key factors behind our performance improvement.
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