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ABSTRACT
Personalized learning considers that the causal effects of a
studied learning intervention may differ for the individual
student. Making the inference about causal effects of studies
interventions is a central problem. In this paper we propose
the Residual Counterfactual Networks (RCN) for answer-
ing counterfactual inference questions, such as ”Would this
particular student benefit more from the video hint or the
text hint when the student cannot solve a problem?”. The
model learns a balancing representation of students by min-
imizing the distance between the distributions of the con-
trol and the treated populations, and then uses a residual
block to estimate the individual treatment effect based on
the representation of the student. We run experiments on
semi-simulated datasets and real-world educational online
experiment datasets to evaluate the efficacy of our model.
The results show that our model matches or outperforms
the state-of-the-art.

Keywords
Counterfactual inference, deep residual learning, educational
experiments, individual treatment effect

1. INTRODUCTION
The goal of personalized learning is to provide pedagogy,
curriculum, and learning environments to meet the needs
of individual students. For example, an Intelligent Tutor
System (ITS) decides which hints would most benefit a spe-
cific student. If the ITS could infer what the student per-
formance would be after receiving each hint, then it would
simply choose the hint which leads to the best performance
for the student. To make this possible, we might run an
online educational experiment by randomly assigning stu-
dents to one of the hints, and collect student performance.
Then making predictions about causal effects of possible in-
terventions (e.g. available hints) becomes a central problem
in this case. In this paper we focus on the task of answering
counterfactual questions [10] such as, ”Would this particular

student benefit more from the video hint or the text hint
when the student cannot solve a problem?”

There are two ways of collecting data for counterfactual in-
ference: randomized control trials (RCTs) and observational
studies. In RCTs, participants (e.g. students) are randomly
assigned to interventions (e.g. video hints or text hints),
while participants in observational studies are not essentially
randomly assigned to interventions. For example, consider
the experiment of evaluating the efficacy of video hints and
text hints for a certain problem. Under the design of RCT,
students who need a hint would be randomly assigned to
either the video hints or the text hints. In an observational
study, students are assigned to one of the interventions based
on their contextual information, such as knowledge level or
personal preference. RCTs are expensive in terms of time
and money compared to observational studies.

[5] proposed Balancing Neural Networks (BNN) which can
be applied to solve the counterfactual inference problem.
They used a form of regularizer to enforce the similarity be-
tween the distributions of representations learned for popu-
lations with different interventions, for example, the repre-
sentations for students who received text hints versus those
who received video hints.This reduces the variance from fit-
ting a model on one distribution and applying it to another.
Because of random assignment to the interventions in RCTs,
the distributions of the populations within different inter-
ventions are highly likely to be identical. However, in the
observational study, we may end up with the situation where
only male students receive video hints and female students
receive text hints. Without enforcing the similarity between
the distributions of representations for male and female stu-
dents, it is not safe to make a prediction of the outcome
if male students receive text hints. In machine learning,
”domain adaptation” refers to the dissimilarity of the distri-
butions between the training data and the test data.

Neural networks have been shown to successfully learn good
representation of high-dimensional data in several tasks [2].
Recent work [6] has demonstrated that (deep) neural net-
works can be used with domain adaptation approaches to
produce outstanding results on some domain adaptation bench-
mark datasets. These successful methods encourage similar-
ity between the deep features representations w.r.t the dif-
ferent domains. This similarity is often enforced by minimiz-
ing a certain distance between the networks’ domain-specific
hidden features.



Motivated by their work, we propose the Residual Counter-
factual Networks (RCN) for the counterfactual inference to
estimate the individual treatment effect and evaluate its ef-
ficacy in both a simulated dataset and a real-world dataset
from an educational online experiment. The RCN extends
the BNN by adding a residual block to estimate the indi-
vidual treatment effect (ITE) based on the learned repre-
sentation of participants. The idea of the residual block is
originated from the state-of-the-art deep residual learning
[3]. We enable the estimation of ITE by plugging several
layers into neural networks to explicitly learn the residual
function with reference to the learned representation.

The rest of the paper is organized as follows. Section 2 pro-
vides an overview of the problem setup of counterfactual
inference for estimating the ITE. Section 3 details informa-
tion of our model. Section 4 gives an overview of related
work in this research area. Section 5 describes the datasets
and evaluation metrics used to test our model. Section 6
presents the results of our model and compares them with
other models. Finally, we discuss the results and conclude
the paper.

2. PROBLEM SETUP
Let T be the set of proposed interventions we wish to con-
sider, X the set of participants, and Y the set of possible
outcomes. For each proposed intervention t ∈ T , let Yt ∈ Y
be the potential outcome for x when x is assigned to the
intervention t. In randomized control trial (RCT) and ob-
served study, only one outcome is observed for a given par-
ticipant x; even if the participant is given an intervention
and later the other, the participant is not in the same state.
In machine learning, ”bandit feedback” refers to this kind of
partial feedback. The model described above is also known
as the Rubin-Neyman causal model [14, 13].

We focus on a binary intervention set T = {0, 1}, where
intervention 1 is often referred as the ”treated” and inter-
vention 0 is the ”control.” In this scenario the ITE for a par-
ticipant x is represented by the quantity of Y1(x) − Y0(x).
Knowing the quantity helps assign participant x to the best
of the two interventions when making a decision is needed,
for example, choosing the best intervention for a specific
student when the student has a trouble solving a problem.
However, we cannot directly calculate ITE due to the fact
that we can only observe the outcome of one of the two
interventions.

In this work we follow the common simplifying assumption
of no-hidden confounding variables. This means that all the
factors determining the outcome of each intervention are
observed. This assumption can be formalized as the strong
ignorability condition:

(Y1, Y0) ⊥ t|x, 0 < p(t = 1|x) < 1, ∀x.

Note that we cannot evaluate the validity of strong ignor-
ability from data, and the validity must be determined by
domain knowledge.

In the ”treated” and the ”control” setting, we refer to the
observed and unobserved outcomes as the factual outcome
yF (x), and the counterfactual outcome yCF (x) respectively.
In other words, when the participant x is assigned to the

”control” (t = 0), yF (x) is equal to Y1(x), and yCF (x) is
equal to Y0(x). The other way around, yF (x) is equal to
Y0(x), and yCF (x) is equal to Y1(x).

Given n samples
{

(xi, ti, y
F
i )
}n
i=1

, where yFi = ti · Y1(xi) +
(1− ti)Y0(xi), a common approach for estimating the ITE is
to learn a function f : X × T → Y such that f(xi, ti) ≈ yFi .
The estimated ITE is then:

ˆITE(xi) =

{
yFi − f(xi, 1− ti), ti = 1.
f(xi, 1− ti)− yFi , ti = 0.

We assume n samples
{

(xi, ti, y
F
i )
}n
i=1

form an empirical

distribution p̂F = {(xi, ti)}ni=1. We call this empirical dis-

tribution p̂F ∼ pF the empirical factual distribution. In
order to calculate ITE, we need to infer the counterfactual
outcome which is dependent on the empirical distribution
p̂CF = {(xi, 1− ti)}ni=1. We call the empirical distribution

p̂CF ∼ pCF . The pF and pCF may not be equal because
the distributions of the control and the treated populations
may be different. The inequality of two distributions may
cause the counterfactual inference over a different distribu-
tion than the one observed from the experiment. In ma-
chine learning terms, this scenario is usually referred to as
domain adaptation, where the distribution of features in test
data are different than the distribution of features in train-
ing data.

3. MODEL
We proposed RCN to estimate individual treatment effect
using counterfactual inference. The RCN first learns a bal-
ancing representation of deep features Φ : X → Rd, and
then learns a residual mapping ∆f on the representation to
estimate the ITE. The structure of the RCN is shown in
Figure 1.

To learn a representation of deep features Φ, the RCN uses
fully connected layers with ReLu activation function, where
Relu(z) = max(0, z). We need to generalize from factual
distribution to counterfactual distribution in the feature rep-
resentation Φ to obtain accurate estimation of counterfac-
tual outcome. The common successful approaches for do-
main adaptation encourage similarity between the latent fea-
ture representations w.r.t the different distributions. This
similarity is often enforced by minimizing a certain distance
between the domain-specific hidden features. The distance
between two distributions is usually referred to as the dis-
crepancy distance, introduced by [8], which is a hypothesis
class dependent distance measure tailored for domain adap-
tation.

In this paper we use an Integral Probability Metric (IPM)
measure of distance between two distributions p0 = p(x|t =
0), and p1 = p(x|t = 1), also known as the control and
treated distributions. The IPM for p0 and p1 is defined as

IPMF (p0, p1) := sup
f∈F

∣∣∣∣∫
S

fdp0 −
∫
S

fdp1

∣∣∣∣ ,
where F is a class of real-valued bounded measurable func-
tions on S.
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Figure 1: Residual Counterfactual Networks for counterfactual inference. IPM is adopted on layers fc1 and
fc2 to minimize the discrepancy distance of the deep features of the control and the treated populations. For
the treated group, we add a residual block fcr1-fcr2 so that fT (x) = fC(x) + ∆f(x)

The choice of functions is the crucial distinction between
IPMs [17]. Two specific IPMs are used in our experiments:
the Maximum Mean Discrepancy (MMD), and the Wasser-
stein distance. IPMF is called MMD, when F =

{
f : ‖f‖H 6 1

}
,

whereH represents a reproducing kernel Hilbert space (RKHS)
with k as its reproducing kernel. In other words, the family
of norm-1 reproducing kernel Hilbert space (RKHS) func-
tions lead to the MMD. The family of 1-Lipschitz functions
F =

{
f : ‖f‖L ≤ 1

}
, where ‖f‖L is the Lipschitz semi-norm

of a bounded continuous real-valued function f , make IPM
the Wasserstein distance. Both the Wasserstein and MMD
metrics have consistent estimators which can be efficiently
computed in the finite sample case [18]. The important prop-
erty of IPM is that

p0 = p1 iff IPMF (p0, p1) = 0.

The representation with reduction of the discrepancy be-
tween the control and the treated populations helps the
model to focus on balancing features across two populations
when inferring the counterfactual outcomes. For instance,
if in an experiment, almost no male student ever received
intervention A, inferring how male students would react to
intervention A is highly prone to error and a more conser-
vative use of the gender feature might be warranted.

After balancing the feature representations of the control
and the treated populations, the next step is to infer the
treatment effect for participant x. We adopt the residual
block [3] to estimate the treatment effect.

As shown in Figure 2, F (x) is the underlying desired func-
tion mapping. Instead of stacking a number of layers to
fit the desired F (x), we let stacked fully connected layers
learn the residual mapping ∆f(x) = F (x) − x. Then the
origin mapping is converted into ∆f(x) + x. The opera-
tion ∆f(x) + x is performed by a shortcut connection and
an element-wise addition. Learning residual mapping is fa-
vored over fitting the desired mapping directly, because it
is easier to find the residual with reference to an identity
mapping than to learn the mapping as new.

Weight

Weight

Figure 2: Residual block

The goal of the residual block is to approximate a residual
function ∆f such that fT (x) = fC(x) + ∆f(fC(x)), where
fC is the deep representation of participant x before being
fed into the output layer, and fT is the input to the output
layer for the treated population. The output layer is a ridge
linear regression to generate the final outcome. From the
definition of the residual function ∆f , we see that ∆f(x)
is the estimated treatment effect for participant x, which
is our interest in a control and treated experiment. With
the residual block directly connected to fc2, the residual
function ∆f(x) is dependent on the feature representation
of participant x.

We plug in the residual block (shown in Figure 1) between



fc2 layer and final output layer for the treated population
in order to estimate the ITE. There is no residual block
plugged in between fc2 layer and the final output layer for
the control population. The final output layer ϕ(·) is a lin-
ear regression to calculate the predicted outcome, such that
Y c = ϕ(fC(x)), and Y t = ϕ(fT (x)).

Recall the problem setup described above that there exist
n samples

{
(xi, ti, y

F
i )
}n
i=1

, where yFi = ti · Y1(xi) + (1 −
ti)Y0(xi). In the control and the treated setting, we as-

sume that nc(nc > 0) samples
{

(xi, 0, y
(0)
i )
}nc

i=1
∼ Dc are

assigned to the control (t = 0), and nt(nt > 0) samples{
(xi, 1, y

(1)
i )
}nt

i=1
∼ Dt are assigned to the treated (t = 1),

such that n = nc + nt. As described above, RCN is an
integration of deep feature learning, feature representation
balancing, and treatment effect estimation in an end-to-end
fashion with the loss function as such:

min
fT =fS+∆f(fS)

1

nc

nc∑
i=1

L(fc(xi), y
(0)
i )

+
1

nt

nt∑
i=1

L(ft(xi), y
(1)
i )

+ λ · IPM(Dc, Dt),

where λ is the tradeoff parameter for the IPM penalty, L is
the loss function of the model. In the case of binary clas-
sification, L is the standard cross entropy. In the case of
regression, L is root-mean-square error (RMSE). During the
training, the model only has the access to the factual out-
come.

4. RELATED WORK
From a conceptual point of view, our work is inspired by
the work on domain adaptation and deep residual learn-
ing. [6] proposed the Residual Transfer Network that adopt
MMD distance to learn transferable deep features from la-
beled data in the source domain and unlabeled data in the
target domain and adds a residual block to transfer the pre-
diction classifier from the target domain to the source do-
main. The structure of our model is similar to that of their
model. Deep residual learning is introduced by [3], the win-
ner of the ImageNet ILSVRC 2015 challenge, to ease the
training of deep networks. The residual block is designed to
learn residual functions ∆F (x) with reference to the layer
input x. Reformulating layers to the residual block makes
the training easier than directly learning the original func-
tions F (x) = ∆F (x) + x.

Our model extends the work by [5, 16], where the authors
build a connection between domain adaptation and counter-
factual inference. They use IPMs, such as MMD and wasser-
stein distance, to learn a representation of the data which
balances the control and treated distributions. The treat-
ment assignment is concatenated with the representation to
predict the factual outcome as while the reverse treatment
assignment is concatenated with the representation to pre-
dict the counterfactual outcome. Compared to their work,
we add a residual block to estimate the individual treatment
effect based on the representation.

[19, 1] proposed causal forests which is built upon the idea
of random forests to estimate the heterogeneous treatment
effect with semi-parametric asymptotic convergence rate.

ASSISTments is a platform that combines large-scale online
education (like Khan Academy & MOOCs) with technology
for rigorous scientific research using randomized experiments
and data mining. It has been used in over 20 published ran-
domized controlled experiments to investigate different ways
to improve student learning. An experiment was conducted
by [11] to determine if students benefitted more if they were
given the scaffolds versus just being given hints that tried
to provide them the same information that the scaffolding
questions asked them. [9] examined adding student pref-
erence to the ASSISTments platform. The purpose of this
experiment was to see whether providing students a choice in
feedback style would alter performance and learning gains.

5. EXPERIMENTS
5.1 Evaluation Metrics
To compare among various models, we report the RMSE of
estimated individual treatment effect, denoted

εITE =

√√√√ 1

n

n∑
i=1

((Y1(xi)− Y0(xi))− ˆITE(xi))2,

and the absolute error in average treatment effect

εATE =

∣∣∣∣∣ 1n
n∑

i=1

(ft(xi)− fs(xi))−
1

n

n∑
i=1

(Y1(xi)− Y0(xi))

∣∣∣∣∣ .
Following [4, 5], we report the Precision in Estimation of
Heterogeneous Effect (PEHE),

PEHE =

√√√√ 1

n

n∑
i=1

((Y1(xi)− Y0(xi))− (ŷ1(xi)− ŷ0(xi))2.

Compared to the fact that achieving a small RMSE of esti-
mated ITE needs the accurate estimation of counterfactual
responses, a good (small) PEHE requires the accurate esti-
mation of both factual and counterfactual responses.

However, calculating εITE , εATE , and PEHE requires the
”ground truth” of the ITE for each participant in the ex-
periment. We cannot gather the counterfactual outcomes
from RCTs and observational studies, and thus do not have
the ITE of each participant. We cannot evaluate εITE and
PEHE on these datasets. In order to evaluate the perfor-
mance on these datasets across various models, we use a
measure, called policy risk, introduced by [16]. Given a
model f , the participant x is assigned to the treatment
πf (x) = 1 if f(x, 1) − f(x, 0) > λ (in the case of RCN,
∆f > λ), where λ is the treatment threshold, and to the
control πf (x) = 0 otherwise. The risk policy is defined as:

RPol(πf ) = 1− (E[Y1|πf (x) = 1] · p(πf = 1)

+ E[Y0|πf (x) = 0] · p(πf = 0)).

The empirical estimator of the risk policy on a dataset is
calculated by:

R̂Pol(πf ) = 1− (E[Y1|πf (x) = 1, t = 1] · p(πf = 1)

+ E[Y0|πf (x) = 0, t = 0] · p(πf = 0)).



Figure 3: Visualization of the IHDP dataset by t-SNE (left). Visualization of the ASSISTments dataset by
t-SNE (right). Each dot represents a data point. The blue means the data point from the control while the
red means the data point from the treatment.

To obtain the policy risk, we select a subset of participants
in the dataset where the treatment recommendation inferred
by the model is the same as the treatment assignment in
the experiment and then calculate the average loss from the
subset of the data.

For the datasets without the ”ground truth” on ITE, we
also calculate the average treatment effect on the treated by

ATT = 1
nt

∑nt
i=1 y

(1)
i − 1

ns

∑ns
i=1 y

(0)
i , and report the error on

ATT as εATT =
∣∣∣ATT− 1

nt

∑nt
i=1(ft(xi)− fs(xi))

∣∣∣.
5.2 Baselines
Balancing Neural Networks (BNN) is another neural networks-
based model for counterfactual inference. Compared to RCN,
it has exactly the same fc1 and fc2 layers with IPM regu-
larizer to learn the representation Φ(x) of the participant
x. However, instead of using residual block to estimate
treatment effect, it concatenates the treatment assignment
ti to the output of fc2 layer Φ(x) and feeds [Φ(xi), ti] to an-
other two fully connected layers to generate the predicted
outcome. We refer to this particular structure of BNN as
BNN-2-2, following [5].

The Counterfactual Regression (CFR) [16] is built on the
BNN. The important difference between these two models
is that the CFR uses a more powerful distribution metric in
the form of IPMs to learn a balancing representation. We
compare our model with BNN-2-2 and CFR to verify the
efficacy of residual block in terms of estimating individual
treatment effect.

We introduce a simple neural networks baseline model to
evaluate the efficacy of the IPM regularizer and residual
mapping. This baseline model is a feed-forward neural net-
works model with four hidden layers, trained to predict the
factual outcome based on X and t, without the IPM regu-
larizer and the residual block. We refer to this as NN-4.

5.3 Simulation based on real data - IHDP

... ...

Figure 4: CFR for ITE estimation. L is a loss func-
tion, IPM is an integral probability metric

The Infant Health and Development Program (IHDP) dataset
was a semi-simulated dataset introduced by [4]. The dataset
consists of a number of covariates from a real randomized
experiment. The goal of the experiment is to study the im-
pact of superior child care and home visits on future cogni-
tive test scores. [4] discarded a biased subset of the treated
population in order to introduce imbalance between treated
and control subjects and used a simulated counterfactual
outcome. Eventually, there are 747 subjects (139 treated,
608 control), each represented by 25 covariates assessing the
attributes of the children and their mothers.

5.4 ASSISTments dataset
The ASSISTments online learning platform is a free web-
based platform utilized by a large user-base of teachers and
students. The system, based primarily in math content, al-
lows teachers to assign several types of assignments for class-
work and homework, reporting on student performance and
learning progress. Students are given immediate feedback on
each problem, and are also presented with several forms of
instructional aid including hints, that provide a useful mes-
sage, and scaffolded questions that break down the problem
into smaller steps. The platform has been the subject of a
recent study within the state of Maine [12], demonstrating
significant learning gains for students using the platform.

The dataset used in this work comes from one of 22 random-



Table 1: Hypothetical data for some example students. The predicted outcome is the probability that the
student would complete the assignment. Students in bold are those whose randomized treatment assignment
is congruent with the recommendation of the counterfactual inference model. Data from these students would
be used to calculate the policy risk.

ID Group Completion
Predicted
outcome if

treated

Predicted
outcome if
not treated

Treatment
effect

Treat?

1 Control 1 0.8 0.75 0.05 1
2 Control 0 0.3 0.45 -0.15 0
3 Treatment 0 0.50 0.38 0.12 1
4 Control 1 0.78 0.9 -0.12 0
5 Treatment 1 0.9 0.6 0.3 1
6 Treament 1 0.91 0.99 -0.08 0
7 Control 0 0.83 0.70 0.13 1
8 Control 1 0.73 0.83 -0.1 0

Table 2: IHDP. Results and standard errors for 1000
repeated experiments

Model εITE εATE PEHE
NN-4 2.0 ± 0.0 0.5 ± 0.0 1.9 ± 0.1

BNN-2-2 1.7 ± 0.0 0.3 ± 0.0 1.6 ± 0.1
CFR 1.4 ± 0.0 0.2 ± 0.0 1.6 ± 0.1
RCN 1.1 ± 0.0 0.05 ± 0.0 1.4 ± 0.1

ized controlled experiments [15] collected within the plat-
form. This experiment was run in assignment types known
as ”skill builders” in which students are given problems until
a threshold of understanding is reached; within ASSIST-
ments, this threshold is traditionally three consecutive cor-
rect responses. Reaching this threshold denotes sufficient
performance and completion of the assignment. In addi-
tion to this experimental data, information of the students
prior to condition assignment is also provided in the form of
problem-level log data providing a breadth of student infor-
mation at fine levels of granularity.

In this experiment, there are two kinds of hints (video versus
text) available for each problem from the assignment when
students answer the problem incorrectly. The assignment
to the video hint and the text video was random. Video
content was designed to mirror text hint in an attempt to
provide identical assistance. There are 147 students who
received the video hint and 237 students who received the
text hint. The dataset includes 15 covariates such as stu-
dent past-performance history, class-past performance his-
tory. We solve a binary classification task which is to predict
the completion of the assignment for each student.

The visualization of IHDP dataset and ASSISTments dataset
by t-Distributed Stochastic Neighbor Embedding (t-SNE)
[7] is shown in Figure 3. The t-SNE is non-parametric visu-
alization technique that can reveal hidden structures in the
data by giving each high-dimensional data point a location
in a two or three-dimensional map. We see that the con-
trol and the treatment populations in both datasets are not
completely separated from each other. The ASSISTments
dataset is slightly more balanced than the IHDP dataset.

6. RESULTS

The results of IHDP is presented in Table 2 when the treat-
ment threshold λ = 0. We see that our proposed RCN per-
forms the best on the dataset in terms of estimating ITE,
ATE and PEHE. There is an especially large improvement
on estimating ITE. These results indicate that the residual
block ∆f(x) helps accurately predict the value of ITE based
on the feature representation Φ(x) for a given participant x.

The results of ASSISTments dataset are the interest of our
work since we hope to apply the RCN to educational ex-
periments in order to support decision making in terms of
personalized learning. The results in terms of policy risk and
the average treatment effect on the treated are shown in Ta-
ble 3 when the treatment threshold λ = 0. The model TA
means ”Treated All” where all students are assigned to the
treatment while the model NT means ”Not Treated” where
all students are assigned to the control. Without considering
that the effects of an intervention may differ for individual
students, the model with the better performance out of these
two models would be adopted when a choice must be made
between these two interventions. The RCN, which consid-
ers the individual treatment effect, outperforms the TA and
the NT. This indicates that taking the individual effect into
account helps make a better choice of interventions. The
comparison between the CFR and the RCN suggests that
the RCN performs better than the CFR does in terms of
risk policy and ATT.

To investigate the correlation between policy risk and treat-
ment threshold λ, we plot the value of policy risk as a func-
tion of treatment threshold λ in Figure 5, and the histogram
of the predicted ITE from the RCN and the CFR on the
ASSISTments dataset in Figure 6 and Figure 7 respectively.
For the results of the ASSISTments dataset from the CFR,
the maximum predicted ITE in the dataset is 0.44. Once
the threshold λ is larger than 0.44, the CFR is converted
to ”Not Treated” where all students are assigned to the con-
trol. Since the maximum predicted ITE in the ASSISTments
dataset from the CFR is 0.18, the CFR is converted to ”Not
Treated” once the treatment threshold λ is larger than 0.18.

7. CONCLUSION
As online educational experiments become popular and easy
to conduct, and machine learning becomes a major tool for
researchers, counterfactual inference gains a lot of interest
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Figure 5: Treatment threshold versus policy risk on
ASSISTments dataset. The lower policy risk is the
better.
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Figure 6: Histogram of predicted ITE from the RCN
on ASSISTments dataset.
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Figure 7: Histogram of predicted ITE from the CFR
on ASSISTments dataset.

Table 3: Results of the ASSISTments Dataset
Model RPOL εATT

TA 0.14 -
NT 0.27 -

CFR 0.14 0.08
RCN 0.06 0.01

for the purpose of personalized learning. In this paper we
propose the Residual Counterfactual Networks (RCN) to es-
timate the individual treatment effect. Because of the dis-
similarity between the distributions of the control and the
treated populations, the RCN uses IPMs, such as Wasser-
stein and MMD distance, to learn balancing deep features
from the data. A residual block is adopted on the deep fea-
tures to learn the individual treatment effect (ITE) so that
estimation of the ITE is dependent on the deep features. We
apply our model to both synthetic datasets and real-world
datasets from online educational experiment, indicating that
our model achieves the state-of-the-art.

One open question for the future work is how to generalize
our model for the situations where there is more than one
treatment in the experiment. Integral Probability Metric
(IPM) can only measure the distance between two distribu-
tions. We could use pair-wised IPM if there are more than
two distributions. But this would be computationally time-
consuming if the number of distributions increases. Since
running experiments is expensive and collecting enough data
for the model to make a reliable prediction is difficult, we
need a better optimization algorithm which allows us to
train the model efficiently.
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